Human GRB10 is imprinted and expressed from the paternal and maternal allele in a highly tissue- and isoform-specific fashion.
نویسندگان
چکیده
As part of a systematic screen for novel imprinted genes of human chromosome 7 we have investigated GRB10, which belongs to a small family of adapter proteins, known to interact with a number of receptor tyrosine kinases and signalling molecules. Upon allele-specific transcription analysis involving multiple distinct splice variants in various fetal tissues, we found that human GRB10 is imprinted in a highly isoform- and tissue-specific manner. In fetal brains, most variants are transcribed exclusively from the paternal allele. Imprinted expression in this tissue is not accompanied by allele-specific methylation of the most 5' CpG island. In skeletal muscle, one GRB10 isoform, gamma1, is expressed from the maternal allele alone, whereas in numerous other fetal tissues, all GRB10 splice variants are transcribed from both parental alleles. A remarkable finding is paternal-specific expression of GRB10 in the human fetal brain, since, in the mouse, this gene is transcribed exclusively from the maternal allele. To our knowledge, this is the first example of a gene that is oppositely imprinted in mouse and human.
منابع مشابه
Identification and characterization of an imprinted antisense RNA (MESTIT1) in the human MEST locus on chromosome 7q32.
Imprinted gene(s) on human chromosome 7 are thought to be involved in Russell-Silver syndrome (RSS), based on the fact that approximately 10% of patients have maternal uniparental disomy of chromosome 7. However, involvement of the known imprinted genes (GRB10 at 7p12, PEG10 at 7q21.3 and MEST at 7q32) in RSS has yet to be established. To screen for new imprinted genes, we are initially using s...
متن کاملDifferentially methylated regions in maternal and paternal uniparental disomy for chromosome 7
DNA methylation is a hallmark of genomic imprinting and differentially methylated regions (DMRs) are found near and in imprinted genes. Imprinted genes are expressed only from the maternal or paternal allele and their normal balance can be disrupted by uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair exclusively from only either the mother or the father. Matern...
متن کاملPaternal deletion of Meg1/Grb10 DMR causes maternalization of the Meg1/Grb10 cluster in mouse proximal Chromosome 11 leading to severe pre- and postnatal growth retardation.
Mice with maternal duplication of proximal Chromosome 11 (MatDp(prox11)), where Meg1/Grb10 is located, exhibit pre- and postnatal growth retardation. To elucidate the responsible imprinted gene for the growth abnormality, we examined the precise structure and regulatory mechanism of this imprinted region and generated novel model mice mimicking the pattern of imprinted gene expression observed ...
متن کاملEpigenetic and transcriptional features of the novel human imprinted lncRNA GPR1AS suggest it is a functional ortholog to mouse Zdbf2linc
Long non-coding RNAs (lncRNAs), transcribed from the intergenic regions of animal genomes, play important roles in key biological processes. In mice, Zdbf2linc was recently identified as an lncRNA isoform of the paternally expressed imprinted Zdbf2 gene. The functional role of Zdbf2linc remains undefined, but it may control parent-of-origin-specific expression of protein-coding neighbors throug...
متن کاملGenomic imprinting of Dopa decarboxylase in heart and reciprocal allelic expression with neighboring Grb10.
By combining a tissue-specific microarray screen with mouse uniparental duplications, we have identified a novel imprinted gene, Dopa decarboxylase (Ddc), on chromosome 11. Ddc_exon1a is a 2-kb transcript variant that initiates from an alternative first exon in intron 1 of the canonical Ddc transcript and is paternally expressed in trabecular cardiomyocytes of the embryonic and neonatal heart. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 9 11 شماره
صفحات -
تاریخ انتشار 2000